THE CONCEPT OF FLUID IN THE STUDY OF FLUID MECHANICS


From the point of view of fluid mechanics, all matter consists of only two states, fluid and solid. The difference between the two is perfectly obvious to the layperson, and it is an interesting exercise to ask a layperson to put this difference into words.

The technical distinction lies with the reaction of the two to an applied shear or tangential stress.

A solid can resist a shear stress by a static deformation; a fluid cannot. Any shear stress applied to a fluid, no matter how small, will result in motion of that fluid. The fluid moves and deforms continuously as long as the shear stress is applied.

As a corollary, we can say that a fluid at rest must be in a state of zero shear stress, a state often called the hydrostatic stress condition in structural analysis. In this condition, Mohr’s circle for stress reduces to a point, and there is no shear stress on any plane cut through the element under stress.

Given the definition of a fluid above, every layperson also knows that there are two classes of fluids, liquids and gases. Again the distinction is a technical one concerning the effect of cohesive forces. A liquid, being composed of relatively close-packed molecules with strong cohesive forces, tends to retain its volume and will form a free surface in a gravitational field if unconfined from above.

Free-surface flows are dominated by gravitational effects. Since gas molecules are widely spaced with negligible cohesive forces, a gas is free to expand until it encounters confining walls. A gas has no definite volume, and when left to itself without confinement, a gas forms an atmosphere which is essentially hydrostatic.

Gases cannot form a free surface, and thus gas flows are rarely concerned with gravitational effects other than buoyancy.


Figure 1.1 illustrates a solid block resting on a rigid plane and stressed by its own weight. The solid sags into a static deflection, shown as a highly exaggerated dashed line, resisting shear without flow. A free-body diagram of element A on the side of the block shows that there is shear in the block along a plane cut at an angle through A.

Since the block sides are unsupported, element A has zero stress on the left and right sides and compression stress p on the top and bottom. Mohr’s circle does not reduce to a point, and there is nonzero shear stress in the block.

By contrast, the liquid and gas at rest in Fig. 1.1 require the supporting walls in order to eliminate shear stress. The walls exert a compression stress of p and reduce Mohr’s circle to a point with zero shear everywhere, i.e., the hydrostatic condition.

The liquid retains its volume and forms a free surface in the container. If the walls are removed, shear develops in the liquid and a big splash results. If the container is tilted, shear again develops, waves form, and the free surface seeks a horizontal configuration, pouring out over the lip if necessary.

Meanwhile, the gas is unrestrained and expands out of the container, filling all available space. Element A in the gas is also hydrostatic and exerts a compression stress p on the walls.

In the above discussion, clear decisions could be made about solids, liquids, and gases. Most engineering fluid-mechanics problems deal with these clear cases, i.e., the common liquids, such as water, oil, mercury, gasoline, and alcohol, and the common gases, such as air, helium, hydrogen, and steam, in their common temperature and pressure ranges.

There are many borderline cases, however, of which you should be aware. Some apparently “solid” substances such as asphalt and lead resist shear stress for short periods but actually deform slowly and exhibit definite fluid behavior over long periods.

Other substances, notably colloid and slurry mixtures, resist small shear stresses but “yield” at large stress and begin to flow as fluids do. Specialized textbooks are devoted to this study of more general deformation and flow, a field called rheology.

Also, liquids and gases can coexist in two-phase mixtures, such as steam-water mixtures or water with entrapped air bubbles. Specialized textbooks present the analysis of such two-phase flows. Finally, there are situations where the distinction between a liquid and a gas blurs.

This is the case at temperatures and pressures above the socalled critical point of a substance, where only a single phase exists, primarily resembling a gas. As pressure increases far above the critical point, the gaslike substance becomes so dense that there is some resemblance to a liquid and the usual thermodynamic approximations like the perfect-gas law become inaccurate.

The critical temperature and pressure of water are Tc = 647 K and pc = 219 atm^2 so that typical problems involving water and steam are below the critical point. Air, being a mixture of gases, has no distinct critical point, but its principal component, nitrogen, has Tc = 126 K and pc = 34 atm. Thus typical problems involving air are in the range of high temperature and low pressure where air is distinctly and definitely a gas.

Related post



No comments:

Post a Comment